https://doi.org/10.3390/antiox11010156 ·
Видання: Antioxidants, 2022, №1, с.156
Видавець: MDPI AG
Автори: Razia Sultana Mohammad, Mustafa F. Lokhandwala, Anees A. Banday
Джерело фінансування: National Institute on Aging
Анотація
Age is one of the major risk factors for the development of chronic pathologies, including kidney diseases. Oxidative stress and mitochondrial dysfunction play a pathogenic role in aging kidney disease. Transcription factor NRF2, a master regulator of redox homeostasis, is altered during aging, but the exact implications of altered NRF2 signaling on age-related renal mitochondrial impairment are not yet clear. Herein, we investigated the role of sulforaphane, a well-known NRF2 activator, on age-related mitochondrial and kidney dysfunction. Young (2–4 month) and aged (20–24 month) male Fischer 344 rats were treated with sulforaphane (15 mg/kg body wt/day) in drinking water for four weeks. We observed significant impairment in renal cortical mitochondrial function along with perturbed redox homeostasis, decreased kidney function and marked impairment in NRF2 signaling in aged Fischer 344 rats. Sulforaphane significantly improved mitochondrial function and ameliorated kidney injury by increasing cortical NRF2 expression and activity and decreasing protein expression of KEAP1, an NRF2 repressor. Sulforaphane treatment did not affect the renal NRF2 expression or activity and mitochondrial function in young rats. Taken together, our results provide novel insights into the protective role of the NRF2 pathway in kidneys during aging and highlight the therapeutic potential of sulforaphane in mitigating kidney dysfunction in elders.
Список літератури
- Denic, Structural and Functional Changes with the Aging Kidney, Adv. Chronic Kidney Dis., № 23, с. 19
https://doi.org/10.1053/j.ackd.2015.08.004 - Glassock, Aging and the Kidneys: Anatomy, Physiology and Consequences for Defining Chronic Kidney Disease, Nephron, № 134, с. 25
https://doi.org/10.1159/000445450 - National Council on Aging (2021, March 02). Healthy Aging Facts. Available online: https://d2mkcg26uvg1cz.cloudfront.net/wp-content/uploads/2018-Healthy-Aging-Fact-Sheet-7.10.18-1.pdf.
- Zhou, The aging kidney, Kidney Int., № 74, с. 710
https://doi.org/10.1038/ki.2008.319 - Plotnikov, The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney, Kidney Int., № 72, с. 1493
https://doi.org/10.1038/sj.ki.5002568 - Santos, Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria, Arch. Toxicol., № 81, с. 495
https://doi.org/10.1007/s00204-006-0173-2 - Daenen, Oxidative stress in chronic kidney disease, Pediatric Nephrol., № 34, с. 975
https://doi.org/10.1007/s00467-018-4005-4 - Zhang, Oxidative stress response and Nrf2 signaling in aging, Free Radic. Biol. Med., № 88, с. 314
https://doi.org/10.1016/j.freeradbiomed.2015.05.036 - Reczek, ROS-dependent signal transduction, Curr. Opin. Cell Biol., № 33, с. 8
https://doi.org/10.1016/j.ceb.2014.09.010 - Pokkunuri, Grape powder improves age-related decline in mitochondrial and kidney functions in fischer 344 rats, Oxidative Med. Cell. Longev., № 2016, с. 6135319
https://doi.org/10.1155/2016/6135319 - Kim, Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury, Aging, № 10, с. 83
https://doi.org/10.18632/aging.101361 - Bratic, The role of mitochondria in aging, J. Clin. Investig., № 123, с. 951
https://doi.org/10.1172/JCI64125 - Lynch, Dietary antioxidant supplementation reverses age-related neuronal changes, Neurobiol. Aging, № 19, с. 461
https://doi.org/10.1016/S0197-4580(98)00082-7 - Alvarado, Dietary supplementation with antioxidants improves functions and decreases oxidative stress of leukocytes from prematurely aging mice, Nutrition, № 22, с. 767
https://doi.org/10.1016/j.nut.2006.05.007 - Jankauskas, The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy, Sci. Rep., № 7, с. 44430
https://doi.org/10.1038/srep44430 - Jankauskas, Aged kidney: Can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning, Cell Cycle (Georget. Tex.), № 17, с. 1291
https://doi.org/10.1080/15384101.2018.1482149 - Szeto, Pharmacologic Approaches to Improve Mitochondrial Function in AKI and CKD, J. Am. Soc. Nephrol., № 28, с. 2856
https://doi.org/10.1681/ASN.2017030247 - Dodson, Modulating NRF2 in Disease: Timing Is Everything, Annu. Rev. Pharmacol. Toxicol., № 59, с. 555
https://doi.org/10.1146/annurev-pharmtox-010818-021856 - Guerrero-Hue, M., Rayego-Mateos, S., Vázquez-Carballo, C., Palomino-Antolín, A., García-Caballero, C., Opazo-Rios, L., Morgado-Pascual, J.L., Herencia, C., Mas, S., and Ortiz, A. (2021). Protective Role of Nrf2 in Renal Disease. Antioxidants, 10.
https://doi.org/10.3390/antiox10010039 - Li, Regulation of Nrf2 signaling, React. Oxyg. Species, № 8, с. 312
- Bryan, The Nrf2 cell defence pathway: Keap1-dependent and-independent mechanisms of regulation, Biochem. Pharmacol., № 85, с. 705
https://doi.org/10.1016/j.bcp.2012.11.016 - Bruns, Nrf2 Signaling and the Slowed Aging Phenotype: Evidence from Long-Lived Models, Oxidative Med. Cell. Longev., № 2015, с. 732596
https://doi.org/10.1155/2015/732596 - Suh, Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid, Proc. Natl. Acad. Sci. USA, № 101, с. 3381
https://doi.org/10.1073/pnas.0400282101 - Houghton, Sulforaphane: Its “Coming of Age” as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease, Oxidative Med. Cell. Longev., № 2019, с. 2716870
https://doi.org/10.1155/2019/2716870 - Kubo, Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress, Sci. Rep., № 7, с. 14130
https://doi.org/10.1038/s41598-017-14520-8 - Yoon, Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme, Biochem. Pharmacol., № 75, с. 2214
https://doi.org/10.1016/j.bcp.2008.02.029 - Zheng, Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy, Diabetes, № 60, с. 3055
https://doi.org/10.2337/db11-0807 - Lv, The Association Between Oxidative Stress Alleviation via Sulforaphane-Induced Nrf2-HO-1/NQO-1 Signaling Pathway Activation and Chronic Renal Allograft Dysfunction Improvement, Kidney Blood Press. Res., № 43, с. 191
https://doi.org/10.1159/000487501 - Yin, The transcription factor Nrf2 might be involved in the process of renal aging, Int. J. Clin. Exp. Med., № 12, с. 5405
- Bose, Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling, Aging Cell, № 19, с. e13261
https://doi.org/10.1111/acel.13261 - Wu, Impaired Nrf2 regulation of mitochondrial biogenesis in rostral ventrolateral medulla on hypertension induced by systemic inflammation, Free Radic. Biol. Med., № 97, с. 58
https://doi.org/10.1016/j.freeradbiomed.2016.05.012 - Murata, H., Takamatsu, H., Liu, S., Kataoka, K., Huh, N.-h., and Sakaguchi, M. (2015). NRF2 Regulates PINK1 Expression under Oxidative Stress Conditions. PLoS ONE, 10.
https://doi.org/10.1371/journal.pone.0142438 - van Waveren, C., and Moraes, C.T. (2008). Transcriptional co-expression and co-regulation of genes coding for components of the oxidative phosphorylation system. BMC Genom., 9.
https://doi.org/10.1186/1471-2164-9-18 - Piantadosi, Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1, Circ. Res., № 103, с. 1232
https://doi.org/10.1161/01.RES.0000338597.71702.ad - Scarpulla, Nuclear activators and coactivators in mammalian mitochondrial biogenesis, Biochim. et Biophys. Acta (BBA)-Gene Struct. Expr., № 1576, с. 1
https://doi.org/10.1016/S0167-4781(02)00343-3 - Baird, Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration, Biol. Open, № 2, с. 761
https://doi.org/10.1242/bio.20134853 - Plafker, A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking, J. Cell Sci., № 130, с. 3467
https://doi.org/10.1242/jcs.203216 - Soetikno, Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2–keap1 pathway, Mol. Nutr. Food Res., № 57, с. 1649
https://doi.org/10.1002/mnfr.201200540 - Asghar, Exercise decreases oxidative stress and inflammation and restores renal dopamine D1 receptor function in old rats, Am. J. Physiol.-Ren. Physiol., № 293, с. F914
https://doi.org/10.1152/ajprenal.00272.2007 - George, Exercise activates redox-sensitive transcription factors and restores renal D1 receptor function in old rats, Am. J. Physiol. Ren. Physiol., № 297, с. F1174
https://doi.org/10.1152/ajprenal.00397.2009 - Pan, Alginate Oligosaccharide Ameliorates D-Galactose-Induced Kidney Aging in Mice through Activation of the Nrf2 Signaling Pathway, BioMed Res. Int., № 2021, с. 6623328
https://doi.org/10.1155/2021/6623328 - Queisser, Aldosterone activates transcription factor Nrf2 in kidney cells both in vitro and in vivo, Antioxid. Redox Signal, № 21, с. 2126
https://doi.org/10.1089/ars.2013.5565 - Farooqui, Nrf2 inhibition induces oxidative stress, renal inflammation and hypertension in mice, Clin. Exp. Hypertens., № 43, с. 175
https://doi.org/10.1080/10641963.2020.1836191 - Li, Rapid kinetic microassay for catalase activity, J. Biomol. Tech., № 18, с. 185
- Toora, Measurement of creatinine by Jaffe’s reaction–determination of concentration of sodium hydroxide required for maximum color development in standard, urine and protein free filtrate of serum, Indian J. Exp. Biol., № 40, с. 352
- Maric, Glomerulosclerosis and Tubulointerstitial Fibrosis are Attenuated with 17β-Estradiol in the Aging Dahl Salt Sensitive Rat, J. Am. Soc. Nephrol., № 15, с. 1546
https://doi.org/10.1097/01.ASN.0000128219.65330.EA - Lahiri, Electrophoretic mobility shift assay for the detection of specific DNA-protein complex in nuclear extracts from the cultured cells and frozen autopsy human brain tissue, Brain Res. Brain Res. Protoc., № 5, с. 257
https://doi.org/10.1016/S1385-299X(00)00021-0 - Benador, A novel approach to measure mitochondrial respiration in frozen biological samples, EMBO J., № 39, с. e104073
https://doi.org/10.15252/embj.2019104073 - Barrientos, In vivo and in organello assessment of OXPHOS activities, Methods, № 26, с. 307
https://doi.org/10.1016/S1046-2023(02)00036-1 - Trounce, Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines, Methods Enzymol., № 264, с. 484
https://doi.org/10.1016/S0076-6879(96)64044-0 - Aminzadeh, Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy, Nephrol. Dial. Transpl., № 28, с. 2038
https://doi.org/10.1093/ndt/gft022 - Itoh, Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes Dev., № 13, с. 76
https://doi.org/10.1101/gad.13.1.76 - Itoh, Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria, J. Clin. Biochem. Nutr., № 56, с. 91
https://doi.org/10.3164/jcbn.14-134 - Cuadrado, Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP, Free Radic. Biol. Med., № 88, с. 147
https://doi.org/10.1016/j.freeradbiomed.2015.04.029 - Kim, Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure, Am. J. Physiol.-Ren. Physiol., № 298, с. F662
https://doi.org/10.1152/ajprenal.00421.2009 - Zhao, Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease, Eur. J. Pharmacol., № 824, с. 1
https://doi.org/10.1016/j.ejphar.2018.01.046 - Robertson, H., Dinkova-Kostova, A.T., and Hayes, J.D. (2020). NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers, 12.
https://doi.org/10.3390/cancers12123609 - Huang, The complexity of the Nrf2 pathway: Beyond the antioxidant response, J. Nutr. Biochem., № 26, с. 1401
https://doi.org/10.1016/j.jnutbio.2015.08.001 - Fontecha-Barriuso, M., Martin-Sanchez, D., Martinez-Moreno, J.M., Monsalve, M., Ramos, A.M., Sanchez-Niño, M.D., Ruiz-Ortega, M., Ortiz, A., and Sanz, A.B. (2020). The Role of PGC-1α and Mitochondrial Biogenesis in Kidney Diseases. Biomolecules, 10.
https://doi.org/10.3390/biom10020347 - Bernier, Reconsidering the Role of Mitochondria in Aging, J. Gerontol. Ser. A, № 70, с. 1334
https://doi.org/10.1093/gerona/glv070 - Kasai, S., Shimizu, S., Tatara, Y., Mimura, J., and Itoh, K. (2020). Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology. Biomolecules, 10.
https://doi.org/10.3390/biom10020320 - Kang, The mitochondrial transcription factor TFAM in neurodegeneration: Emerging evidence and mechanisms, FEBS Lett., № 592, с. 793
https://doi.org/10.1002/1873-3468.12989 - Picca, A., Pesce, V., Fracasso, F., Joseph, A.-M., Leeuwenburgh, C., and Lezza, A.M.S. (2013). Aging and calorie restriction oppositely affect mitochondrial biogenesis through TFAM binding at both origins of mitochondrial DNA replication in rat liver. PLoS ONE, 8.
https://doi.org/10.1371/journal.pone.0074644 - Thomas, RhTFAM treatment stimulates mitochondrial oxidative metabolism and improves memory in aged mice, Aging, № 4, с. 620
https://doi.org/10.18632/aging.100488 - Chung, Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis, Cell Metab., № 30, с. 784
https://doi.org/10.1016/j.cmet.2019.08.003 - Abramov, The emerging role of Nrf2 in mitochondrial function, Free Radic. Biol. Med., № 88, с. 179
https://doi.org/10.1016/j.freeradbiomed.2015.04.036 - Baldelli, Punctum on two different transcription factors regulated by PGC-1α: Nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2, Biochim. et Biophys. Acta (BBA)-Gen. Subj., № 1830, с. 4137
https://doi.org/10.1016/j.bbagen.2013.04.006 - Lee, PGC-1α, a potential therapeutic target against kidney aging, Aging Cell, № 18, с. e12994
https://doi.org/10.1111/acel.12994 - Aquilano, p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance, Antioxid. Redox Signal, № 18, с. 386
https://doi.org/10.1089/ars.2012.4615 - Cardol, P., Figueroa, F., Remacle, C., Franzén, L.-G., and González-Halphen, D. (2009). Oxidative phosphorylation: Building blocks and related components. The Chlamydomonas Sourcebook, Elsevier.
https://doi.org/10.1016/B978-0-12-370873-1.00021-6 - Patel, Decreased cytochrome c mediates an age-related decline of oxidative phosphorylation in rat kidney mitochondria, Biochem. J., № 427, с. 105
https://doi.org/10.1042/BJ20091373 - Ojaimi, Irregular distribution of cytochrome c oxidase protein subunits in aging and Alzheimer’s disease, Ann. Neurol., № 46, с. 656
https://doi.org/10.1002/1531-8249(199910)46:4<656::AID-ANA16>3.0.CO;2-Q - Balsa, Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain, Science, № 340, с. 1567
https://doi.org/10.1126/science.1230381 - Calvo, The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency, Cell Rep., № 15, с. 197
https://doi.org/10.1016/j.celrep.2016.03.009 - Quinlan, Mitochondrial Complex II Can Generate Reactive Oxygen Species at High Rates in Both the Forward and Reverse Reactions*, J. Biol. Chem., № 287, с. 27255
https://doi.org/10.1074/jbc.M112.374629 - Reifschneider, Defining the mitochondrial proteomes from five rat organs in a physiologically significant context using 2D blue-native/SDS-PAGE, J. Proteome Res., № 5, с. 1117
https://doi.org/10.1021/pr0504440 - Frenzel, Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex, Exp. Gerontol., № 45, с. 563
https://doi.org/10.1016/j.exger.2010.02.003 - Ryoo, I.-G., Ha, H., and Kwak, M.-K. (2014). Inhibitory role of the KEAP1-NRF2 pathway in TGFβ1-stimulated renal epithelial transition to fibroblastic cells: A modulatory effect on SMAD signaling. PLoS ONE, 9.
https://doi.org/10.1371/journal.pone.0093265 - Ebisawa, Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation, J. Biol. Chem., № 276, с. 12477
https://doi.org/10.1074/jbc.C100008200
Публікації, які цитують цю публікацію
Nrf2 Activation in Chronic Kidney Disease: Promises and Pitfalls
Ana Karina Aranda-Rivera, Alfredo Cruz-Gregorio, José Pedraza-Chaverri, Alexandra Scholze
https://doi.org/10.3390/antiox11061112 ·
2022, Antioxidants, №6, с.1112
Scopus
WoS
Цитувань Crossref:18
Antioxidants targeting mitochondria function in kidney diseases
Ana Karina Aranda-Rivera, Alfredo Cruz-Gregorio, Isabel Amador-Martínez, Estefani Yaquelin Hernández-Cruz, Edilia Tapia, José Pedraza-Chaverri
https://doi.org/10.1016/j.mitoco.2024.03.002
2024, Mitochondrial Communications, с.21-37
Цитувань Crossref:0
Functional properties of foods in chronic kidney disease
Ludmila FMF Cardozo, Peter Stenvinkel, Denise Mafra
https://doi.org/10.1016/b978-0-323-91747-6.00008-1
2024, Functional Foods and Chronic Disease, с.95-104
Scopus
Цитувань Crossref:0
Accelerated Aging Induced by an Unhealthy High-Fat Diet: Initial Evidence for the Role of Nrf2 Deficiency and Impaired Stress Resilience in Cellular Senescence
Priya Balasubramanian, Tamas Kiss, Rafal Gulej, Adam Nyul Toth, Stefano Tarantini, Andriy Yabluchanskiy, Zoltan Ungvari, Anna Csiszar
https://doi.org/10.3390/nu16070952 ·
2024, Nutrients, №7, с.952
Scopus
WoS
Цитувань Crossref:0
Sulforaphane Protects against Unilateral Ureteral Obstruction-Induced Renal Damage in Rats by Alleviating Mitochondrial and Lipid Metabolism Impairment
Ana Karina Aranda-Rivera, Alfredo Cruz-Gregorio, Omar Emiliano Aparicio-Trejo, Edilia Tapia, Laura Gabriela Sánchez-Lozada, Fernando Enrique García-Arroyo, Isabel Amador-Martínez, Marisol Orozco-Ibarra, Francisca Fernández-Valverde, José Pedraza-Chaverri
https://doi.org/10.3390/antiox11101854 ·
2022, Antioxidants, №10, с.1854
Scopus
WoS
Цитувань Crossref:18
Research advances in the protective effect of sulforaphane against kidney injury and related mechanisms
Ruoxi Chang
https://doi.org/10.1051/bioconf/20225501006 ·
2022, BIO Web of Conferences, с.01006
Цитувань Crossref:0
Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases
Da-Wei Lin, Yung-Chien Hsu, Cheng-Chih Chang, Ching-Chuan Hsieh, Chun-Liang Lin
https://doi.org/10.3390/ijms24076053 ·
2023, International Journal of Molecular Sciences, №7, с.6053
Scopus
WoS
Цитувань Crossref:0
YAP-Activated SATB2 Is a Coactivator of NRF2 That Amplifies Antioxidative Capacity and Promotes Tumor Progression in Renal Cell Carcinoma
Juan Jin, Fen Chen, Wenfang He, Li Zhao, Bo Lin, Danna Zheng, Li Chen, Hongchao He, Qiang He
https://doi.org/10.1158/0008-5472.can-22-1693 ·
2023, Cancer Research, №5, с.786-803
Scopus
WoS
Цитувань Crossref:0
Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction
Jiewu Huang, Ye Liang, Lili Zhou
https://doi.org/10.3389/fphar.2023.1142001 ·
2023, Frontiers in Pharmacology
Scopus
WoS
Цитувань Crossref:0
Mitochondrial Dysfunction in the Cardio-Renal Axis
Nerea Mendez-Barbero, Jorge Oller, Ana Sanz, Adrian Ramos, Alberto Ortiz, Marta Ruiz-Ortega, Sandra Rayego-Mateos
https://doi.org/10.3390/ijms24098209 ·
2023, International Journal of Molecular Sciences, №9, с.8209
Scopus
WoS
Цитувань Crossref:1
Знайти всі цитування публікації